# FATTY ACID COMPOSITION OF OIL FROM THREE *MUCUNA* BEAN VARIETIES FROM NIGERIA – A SHORT REPORT

I.E. Ezeagu, A.G. Gopal Krishna, S. Khatoon

Central Food Technological Research Institute, Mysore 570 013, India

Key words: fatty acid composition, Mucuna seeds, Nigeria

Fatty acid composition of three *Mucuna* beans varieties, *M. cochinchinenses*, *M. utilis* and *M. pruriens* (var IRZ) are reported. Fatty acids levels in the *Mucuna* seed oils were comparable, except that erucic acid (C22: 1n-9) occurred only in *M. cochinchinenses*. With reference to soybean, *Mucuna* seed oils were higher in total saturated fatty acids but lower in total unsaturates. It was concluded that *Mucuna* seeds could be exploited for oil and the by products used for livestock feeding.

## INTRODUCTION

The addition of new sources of edible oils to the national food supply could measurably reduce the current shortages and high prices of traditional oils [Vietmeyer & Janick, 1996]. This is especially more important in the sub-Saharan Africa where serious food shortages due to population growth have been widely reported [FAO, 2002; Sadik, 1991]. However, such novel sources need to be thoroughly evaluated for their chemical, nutritional and toxicological properties before being used as supplementary oils for animal or human consumption [Longvah *et al.*, 2000].

In evaluating the nutritional quality of oils, fatty acid composition occupies a special place in view of the fact that certain fatty acids are linked to hyperlipidemic and cholestermic effects in the body. Saturated fatty acids have a more hyperlipidemic effect than the saturated fatty acids [Goode *et al.*, 1995].

*Mucuna* is an herbaceous legume, which has proven to be excellent green manue/cover crop [Carsky *et al.*, 1998]. Reports to date on its chemical and nutrient composition show that it compares favourably to commonly consumed grain legumes [Ezeagu *et al.*, 2003; Eilitta *et al.*, 2003]. However, most *Mucuna* types have pods that are covered with velvety hairs that irritate the skin. Additionally, toxic constituents in the seeds have been reported, 3,4-dihydroxy-L-phenylalanine (L-DOPA) being the most potent. These factors have limited its use and adoption to date and as a result a lot of the seeds go into waste. This study seeks to evaluate further the nutritional potential of *Mucuna* varieties compared to the traditional soybean.

## MATERIALS AND METHODS

Matured *Mucuna* seed samples were collected from IITA, Ibadan, Nigeria, processed as previously described [Ezeagu *et al.*, 2002]. Lipds were extracted from the seeds with petroleum ether (boiling point 40–60°C) in a Soxhlet extractor. Soybean was added for comparison. The lipid extracts were transmethylated with trimethylsulfonium-hydroxide (TMSH) as outlined by Litchfield [1972]. The fatty acid methyl esters were analysed by gas chromatography using a GLC (model Shimadzu, GC-15A) equipped with a flame-ionization detector and a 3 m capillary column (i.d. 0.5 mm) (15% DEGS on chromosorb WAW 60–120 mesh). The initial column temperature was 180°C (isothermal). The injection temperature was 220°C and the detector temperature was 230°C. Nitrogen was used as the carrier gas. Peak areas were integrated using CR-3A Data Processor Software, and the fatty acids were identified by comparison of their retention time with those of known standards. All analyses were done in duplicate.

#### **RESULTS AND DISCUSSION**

Crude lipid contents are displayed in Figure 1 and fatty acid profiles are shown in Table 1. Oil yields from the three Mucuna varieties were low and on the same level (4.19–4.99 g/100 g). Mucuna is obviously not an oil seed and inferior to soybean in oil content. Palmitic (C16:0) and stearic (C18:0) acids, ranging between 18.01–20.86 and 8.43–13.52% respectively are the predominant saturated fatty acids in the Mucuna seeds. A similar trend occurs also in the soybean oil. Palmitic acid levels in Mucuna seeds are on the same level and higher than levels in the reference seeds. Oleic (C8:1n-9), linoleic (C18:2n-6) and linolenic (C18:3n-3) acids are the dominant unsaturated acids, making up to 58.51, 60.62 and 58.86% of the total fatty acids in M. utilis, M. cochinchinesis and M. pruriens (IRZ) respectively. Stearic acid was lower in M. utilis (8.43%) than in M. cochinchinenses and M. pruriens (IRZ) (13.52 and 12.29%, respectively). Erucic (C22:1n-9) acid occurred only in M. cochinchinenses, while gadoleic (C20:1n-9) acid occurred only in IRZ. Ligoneric acid was not

Author's address for correspondence (current address): I.E. Ezeagu, Nutrition Unit, Medical Biochemistry Department, University of Nigeria, Enugu Campus, Nigeria; e-mail: ikezeagu@yahoo.co.uk

detected in IRZ, while about the same amounts of the acid occurred in *M. cochinchinenses* and *M. utilis*.

*Mucuna* seed oils were inferior to soybean in the content of unsaturated fatty acids as the U/S ratios. Behenic (C22:0), which occurred also in soybean, was only detected in *M. pruriens* (IRZ). Erucic occurred only in *M. cochichinensis* (1.47%) in low amounts and thus constitute no nutritional disadvantage. *Mucuna* seed oil seems to fall within the group of semidrying oils [Bailey, 1951; Eromosele *et al.*, 1994]. Such oils are rich in oleic and linoleic acids and thus make good edible oils. They are also high in linolenic acid and demonstrate a high degree of unsaturation.

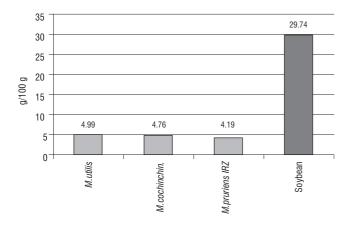



FIGURE 1. Oil content of Mucuna seeds as compared to soybean.

TABLE 1. Fatty acid composition of *Mucuna* seed oils compared to soybean (% of sum)\*.

| Fatty acids                        | М.     | М.             | M. pruriens | Soybean |
|------------------------------------|--------|----------------|-------------|---------|
| -                                  | utilis | cochinchinesis | var IRZ     |         |
| C <sub>14:0</sub>                  | -      | -              | -           | 0.1     |
| C <sub>16:0</sub>                  | 20.86  | 18.01          | 20.0        | 10.6    |
| C <sub>16: 1n-9</sub>              | -      | -              | 0.1         | 0.1     |
| C <sub>18:0</sub>                  | 8.40   | 12.22          | 12.29       | 4.0     |
| C <sub>18: 1n-9</sub>              | 13.91  | 14.33          | 14.38       | 23.3    |
| C <sub>18: 2n-6</sub>              | 44.60  | 42.38          | 44.48       | 53.7    |
| C <sub>18: 3n-3</sub>              | 4.0    | 3.96           | 5.31        | 7.6     |
| C <sub>20:0</sub>                  | 2.28   | 2.05           | 2.54        | 0.3     |
| C <sub>20: 1n-9</sub>              | 0.96   | -              | -           | -       |
| C <sub>22:0</sub>                  | -      | -              | 0.94        | 0.3     |
| C <sub>22: 1n-9</sub>              | -      | 1.47           | -           | -       |
| C <sub>24:0</sub>                  | 5.04   | 4.67           | -           | -       |
| Total saturated <sup>a</sup>       | 36.58  | 37.95          | 35.73       | 15.3    |
| Total unsaturated <sup>b</sup>     | 63.47  | 62.14          | 64.27       | 84.7    |
| Total polyunsaturated <sup>c</sup> | 48.6   | 46.34          | 49.79       | 61.3    |
| U/S ratio <sup>d</sup>             | 1.7    | 1.7            | 1.8         | 5.5     |

\*Means of two independent analyses; <sup>a</sup>Sum of all saturated fatty acids; <sup>b</sup>Sum of all unsaturated fatty acids; <sup>c</sup>Sum of all polyunsaturated fatty acids; <sup>d</sup>Sum of unsaturated/Sum of saturated; – not detected.

*Mucuna* bean has not been put into much nutritional use mainly due to the high DOPA content and as a result, large quantities are going into waste. Fatty acid profile shows appreciable levels of unsaturated fatty acids. A possible avenue for its utilization could be *via* oil extraction.

## CONCLUSION

Due to the low oil content, extraction of oil from *Mucuna* could be explored after the cost effectiveness is

considered. There would be the added advantage that the by products could be used for livestock feeding.

### ACKNOWLEDGEMENT

I.E. Ezeagu was a UNU Fellow at CFTRI, Mysore, India. The scholarship award from the United Nations University, Tokyo, Japan is gratefully acknowledged.

## REFERENCES

- 1. Bailey A., Industrial Oil and Fat Products, 2<sup>nd</sup> edn., Inter-science Publishers Inc., New York, USA, 1951, pp. 25–30.
- Carsky R.J., Tarawali S.A., Becker M., Chikoye D. Tian G., Sanginga N., *Mucuna* – herbaceous cover legume with potential for multiple uses. Resources and Crop Management, 1998, Research Monograph No. 25, IITA, Ibadan, Nigeria, pp. 35–36.
- Eilitta M., Miunga J., Mureithi J., Sandoval-Castro C., Szabo N. (eds.), Increasing *Mucuna*'s Potential as a Food and Feed Crop. 2003, *in*: Proceedings of a Workshop organized by KARI and CIEPA-IITA, Mombasa, Kenya, p. 341.
- Eromosele I.C., Eromosele C.O., Akintoye A.O., Komolafe T.O., Characterization of oils and chemical analysis of the seeds of wild plants. Plant Foods Human Nutr., 1994, 46, 361–365.
- Ezeagu I.E., Sri Devi, Haridas Rao P., Harandra Nath, Appu Rao A.G., Gowda L.R., Tarawali G., Prospects for incorporation of defatted *Mucuna* flour in biscuits formulation. J. Food Sci. Technol., 2002, 39, 435–438.
- Ezeagu I.E., Maziya-Dixon B., Tarawali G., Seed characteristics, and nutrient and anti-nutrient composition of 12 *Mucuna* accessions from Nigeria. Tropical & Subtropical Agroecosystems, 2003, 1, 129–139.
- FAO (Food and Agricultural Organization), The State of Food Insecurity in the World, 2002, Rome, Italy, pp. 6–30.
- Goode G.K., Miller J.P., Heagerty A.M., Hyperlipidaemia, hypertension, and coronary heart disease. Lancet, 1995, 345, 362–364.
- Litchfield C., Analysis of Triglycerides. 1972, Academic Press, New York and London, pp. 31–32.
- Longvah T., Deosthale Y.G., Kumar P.U., Nutritional and short-term toxicological evaluation of Perilla seed oil. Food Chem., 2000, 70, 13–16.
- Sadik N., Population growth and the food crisis. Food, Nutri. Agric., 1991, 1, 3–6.
- Vietmeyer N. and Janick J.(eds.), New Crops. 1996, *in*: Proceedings of the Third National Symposium, Indianapolis, Indiana, USA, Am. Soc. Horticultural Sci. Alexandria, USA, 22–25 Oct. 1996, pp. 2–8.

Received October 2004. Revision received February and accepted March 2005.